Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12146-12157, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38688004

RESUMO

Current core-shell hybrids used in diverse energy-related applications possess limited dispersibility and film uniformity that govern their overall performances. Herein, we showcase superdispersible core-shell hybrids (P2VP@BaTiO3) composed of a poly(2-vinylpyridine) (P2VP) (5-20 wt %) and a barium titanate oxide (BaTiO3), maximizing dielectric constants by forming the high-quality uniform films. The P2VP@BaTiO3-based triboelectric nanogenerators (TENGs), especially the 10 wt % P2VP (P2VP10@BaTiO3)-based one, deliver significantly enhanced output performances compared to physically mixed P2VP/BaTiO3 counterparts. The P2VP10@BaTiO3-based double-layer TENG exhibits not only an excellent transferred charge density of 281.7 µC m-2 with a power density of 27.2 W m-2 but also extraordinary device stability (∼100% sustainability of the maximum output voltage for 54,000 cycles and ∼68.7% voltage retention even at 99% humidity). Notably, introducing the MoS2/SiO2/Ni-mesh layer into this double-layer TENG enables ultrahigh charge density of up to 1228 µC m-2, which is the top value reported for the TENGs so far. Furthermore, we also demonstrate a near-field communication-based sensing system for monitoring CO2 gas using our developed self-powered generator with enhanced output performance and robustness.

2.
ACS Nano ; 18(10): 7558-7569, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38420914

RESUMO

Water electrolysis is emerging as a promising renewable-energy technology for the green production of hydrogen, which is a representative and reliable clean energy source. From economical and industrial perspectives, the development of earth-abundant non-noble metal-based and bifunctional catalysts, which can simultaneously exhibit high catalytic activities and stabilities for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), is critical; however, to date, these types of catalysts have not been constructed, particularly, for high-current-density water electrolysis at the industrial level. This study developed a heterostructured zero-dimensional (0D)-one-dimensional (1D) PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF)-Ni3S2 as a self-supported catalytic electrode via interface and morphology engineering. This unique heterodimensional nanostructure of the PBSCF-Ni3S2 system demonstrates superaerophobic/superhydrophilic features and maximizes the exposure of the highly active heterointerface, endowing the PBSCF-Ni3S2 electrode with outstanding electrocatalytic performances in both HER and OER and exceptional operational stability during the overall water electrolysis at high current densities (500 h at 500 mA cm-2). This study provides important insights into the development of catalytic electrodes for efficient and stable large-scale hydrogen production systems.

3.
ACS Nano ; 17(11): 10817-10826, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37183803

RESUMO

The introduction of heteroatoms is a widely employed strategy for electrocatalysis of transition metal dichalcogenides (TMDs). This approach activates the inactive basal plane, effectively boosting the intrinsic catalytic activity. However, the effect of atomic configurations incorporated within the TMDs' lattice on catalytic activity is not thoroughly understood owing to the lack of controllable synthetic approaches for highly doped TMDs. In this study, we demonstrate a facile approach to realizing heavily doped MoS2 with a high doping concentration above 16% via intermediate-reaction-mediated chemical vapor deposition. As the V doping concentration increased, the incorporated V atoms coalesced in a manner that enabled both the basal plane activation and electrical conductivity enhancement of MoS2. This accelerated the kinetics of the hydrogen evolution reaction (HER) through the reduced Gibbs free energy of hydrogen adsorption, as evidenced by experimental and theoretical analyses. Consequently, the coalesced V-doped MoS2 exhibited superior HER performance, with an overpotential of 100 mV at 10 mA cm-2, surpassing the pristine and single-atom-doped counterparts. This study provides an intriguing pathway for engineering the atomic doping configuration of TMDs to develop efficient 2D nanomaterial-based electrocatalysts.

4.
Adv Sci (Weinh) ; 10(3): e2205179, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442861

RESUMO

An innovative autonomous resonance-tuning (ART) energy harvester is reported that utilizes adaptive clamping systems driven by intrinsic mechanical mechanisms without outsourcing additional energy. The adaptive clamping system modulates the natural frequency of the harvester's main beam (MB) by adjusting the clamping position of the MB. The pulling force induced by the resonance vibration of the tuning beam (TB) provides the driving force for operating the adaptive clamp. The ART mechanism is possible by matching the natural frequencies of the TB and clamped MB. Detailed evaluations are conducted on the optimization of the adaptive clamp tolerance and TB design to increase the pulling force. The energy harvester exhibits an ultrawide resonance bandwidth of over 30 Hz in the commonly accessible low vibration frequency range (<100 Hz) owing to the ART function. The practical feasibility is demonstrated by evaluating the ART performance under both frequency and acceleration-variant conditions and powering a location tracking sensor.

5.
Small ; 18(48): e2204078, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36180411

RESUMO

The demand for power-efficient micro-and nanodevices is increasing rapidly. In this regard, electrothermal nanowire-based heaters are promising solutions for the ultralow-power devices required in IoT applications. Herein, a method is demonstrated for producing a 1D nanoheater by selectively coating a suspended pyrolyzed carbon nanowire backbone with a thin Au resistive heater layer and utilizing it in a portable gas sensor system. This sophisticated nanostructure is developed without complex nanofabrication and nanoscale alignment processes, owing to the suspended architecture and built-in shadow mask. The suspended carbon nanowires, which are batch-fabricated using carbon-microelectromechanical systems technology, maintain their structural and functional integrity in subsequent nanopatterning processes because of their excellent mechanical robustness. The developed nanoheater is used in gas sensors via user-designable localization of the metal oxide semiconductor nanomaterials onto the central region of the nanoheater at the desired temperature. This allows the sensing site to be uniformly heated, enabling reliable and sensitive gas detection. The 1D nanoheater embedded gas sensor can be heated immediately to 250 °C at a remarkably low power of 1.6 mW, surpassing the performance of state-of-the-art microheater-based gas sensors. The presented technology offers facile 1D nanoheater production and promising pathways for applications in various electrothermal devices.

6.
Nanomaterials (Basel) ; 12(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35564208

RESUMO

Here, a highly sensitive triboelectric bending sensor in non-contact mode operation, less sensitive to strain, is demonstrated by designing multiple triangular prisms at both sides of the polydimethylsiloxane film. The sensor can detect bending in a strained condition (up to 20%) as well as bending direction with quite high linear sensitivity (~0.12/degree) up to 120°, due to the electrostatic induction effect between Al and poly (glycerol sebacate) methacrylate. Further increase of the bending angle to 135° significantly increases the sensitivity to 0.16/degree, due to the contact electrification between them. The sensors are attached on the top and bottom side of the proximal interphalangeal and wrist, demonstrating a directional bending sensor with an enhanced sensitivity.

7.
ACS Appl Mater Interfaces ; 14(16): 18248-18260, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35413181

RESUMO

The efficient realization of bifunctional catalysts has immense opportunities in energy conversion technologies such as water splitting. Transition metal dichalcogenides (TMDs) are considered excellent hydrogen evolution catalysts owing to their hierarchical atomic-scale layered structure and feasible phase transition. On the other hand, for efficient oxygen evolution, perovskite oxides offer the best performance based on their rational design and flexible compositional structure. A unique way to achieve an efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in a single-cell configuration is through the hybridization of TMDs with perovskite oxides to form a bifunctional electrocatalyst. Here, we report a simple yet effective strategy to inherently tune the intrinsic properties of a TMD based on MoS2 and its hybridization with LaCoO3 perovskite oxide to deliver enhanced electrocatalytic activity for both the HER and OER. Detailed Raman and XPS measurements highlighted a clear phase transformation of MoS2 from a semiconducting to metallic phase by effectively tailoring the precursor compositions. Based on this, the morphological features yielded an interesting spherical flower-shaped nanostructure with vertically aligned petals of MoS2 with increased surface-active edge sites suitable for the HER. Subsequent hybridization of nanostructured MoS2 with LaCoO3 provides a bifunctional catalytic system with an increased BET surface area of 33.4 m2/g for an overall improvement in water splitting with a low onset potential (HER: 242 mV and OER: 1.6 V @10 mA cm-2) and Tafel slope (HER: 78 mV dec-1; OER: 62.5 mV dec-1). Additionally, the bifunctional catalyst system exhibits long-term stability of up to ∼400 h under continuous operation at a high current density of 50 mA cm-2. These findings will pave the way for developing cost-effective and less complex bifunctional catalysts by simply and inherently tuning the influential material properties for full-cell electrochemical water splitting.

8.
Sensors (Basel) ; 21(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34282792

RESUMO

Junction networks made of longitudinally connected metal oxide nanowires (MOx NWs) have been widely utilized in resistive-type gas sensors because the potential barrier at the NW junctions leads to improved gas sensing performances. However, conventional MOx-NW-based gas sensors exhibit limited gas access to the sensing sites and reduced utilization of the entire NW surfaces because the NW networks are grown on the substrate. This study presents a novel gas sensor platform facilitating the formation of ZnO NW junction networks in a suspended architecture by growing ZnO NWs radially on a suspended carbon mesh backbone consisting of sub-micrometer-sized wires. NW networks were densely formed in the lateral and longitudinal directions of the ZnO NWs, forming additional longitudinally connected junctions in the voids of the carbon mesh. Therefore, target gases could efficiently access the sensing sites, including the junctions and the entire surface of the ZnO NWs. Thus, the present sensor, based on a suspended network of longitudinally connected NW junctions, exhibited enhanced gas response, sensitivity, and lower limit of detection compared to sensors consisting of only laterally connected NWs. In addition, complete sensor structures consisting of a suspended carbon mesh backbone and ZnO NWs could be prepared using only batch fabrication processes such as carbon microelectromechanical systems and hydrothermal synthesis, allowing cost-effective sensor fabrication.

9.
ACS Appl Mater Interfaces ; 13(18): 22000-22008, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33904704

RESUMO

Owing to its exceptional physicochemical properties, graphene has demonstrated unprecedented potential in a wide array of scientific and industrial applications. By exploiting its chemically inert surface endowed with unique barrier functionalities, we herein demonstrate antiadhesive monolayer graphene films for realizing a peel-and-pick transfer process of target materials from the donor substrate. When the graphene antiadhesion layer (AAL) is inserted at the interface between the metal and the arbitrary donor substrate, the interfacial interactions can be effectively weakened by the weak interplanar van der Waals forces of graphene, enabling the effective release of the metallic electrode from the donor substrate. The flexible embedded metallic electrode with graphene AAL exhibited excellent electrical conductivity, mechanical durability, and chemical resistance, as well as excellent performance in flexible heater applications. This study afforded an effective strategy for fabricating high-performance and ultraflexible embedded metallic electrodes for applications in the field of highly functional flexible electronics.

10.
RSC Adv ; 11(38): 23221-23227, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479777

RESUMO

The timely biochemical detection of environmental pollutants or infectious disease is a predominant challenge for global health and people living in remote areas. However, the energy supply is still difficult for both the pretreatment and test steps, especially for diagnostics in resource-limited environments or outdoor point-of-care testing. Herein, we demonstrate a hand-powered triboelectric nanogenerator (TENG) system, which can simultaneously accomplish centrifugal pretreatment and analysis without an additional power supply. The complete separation of plasma from red blood cells can be achieved within 1.5 min at an operation frequency of 1 Hz. Besides, according to the impressive high rotational speed of 7500 rpm, the rotating mechanical energy can be efficiently recycled by the TENG to power different electronic devices, such as an electronic watch or thermometer. As a demonstration, the pretreatment of lake water and the detection of hydrogen peroxide contained in it has been realized. The combination of the system with different types of sensors will further promote its applications in multifarious biochemical detections. Moreover, this TENG system is effective, field-portable and ultra-low cost, and is promising for battery-free point-of-care diagnostic systems for outdoor or harsh environments.

11.
Sci Technol Adv Mater ; 20(1): 927-936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608130

RESUMO

Since 2012, a triboelectric nanogenerator (TENG) has provided new possibilities to convert tiny and effective mechanical energies into electrical energies by the physical contact of two objects. Over the past few years, with the advancement of materials' synthesis and device technologies, the TENGs generated a high instantaneous output power of several mW/cm2, required to drive various self-powered systems. However, TENGs may suffer from intrinsic and practical limitations such as air breakdown that affect the further increase of the outputs. This article provides a comprehensive review of high-output TENGs from fundamental issues through materials to devices. Finally, we show some strategies for fabricating high-output TENGs.

12.
Nano Lett ; 19(7): 4306-4313, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31192615

RESUMO

The remarkable electronic and mechanical properties of nanowires have great potential for fascinating applications; however, the difficulties of assembling ordered arrays of aligned nanowires over large areas prevent their integration into many practical devices. In this paper, we show that aligned VO2 nanowires form spontaneously after heating a thin V2O5 film on a grooved SiO2 surface. Nanowires grow after complete dewetting of the film, after which there is the formation of supercooled nanodroplets and subsequent Ostwald ripening and coalescence. We investigate the growth mechanism using molecular dynamics simulations of spherical Lennard-Jones particles, and the simulations help explain how the grooved surface produces aligned nanowires. Using this simple synthesis approach, we produce self-aligned, millimeter-long nanowire arrays with uniform metal-insulator transition properties; after their transfer to a polymer substrate, the nanowires act as a highly sensitive array of strain sensors with a very fast response time of several tens of milliseconds.

13.
Micromachines (Basel) ; 9(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30424465

RESUMO

Ever since a new energy harvesting technology, known as a triboelectric nanogenerator (TENG), was reported in 2012, the rapid development of device fabrication techniques and mechanical system designs have considerably made the instantaneous output power increase up to several tens of mW/cm². With this innovative technology, a lot of researchers experimentally demonstrated that various portable/wearable devices could be operated without any external power. This article provides a comprehensive review of polyvinylidene fluoride (PVDF)-based polymers as effective dielectrics in TENGs for further increase of the output power to speed up commercialization of the TENGs, as well as the fundamental issues regarding the materials. In the end, we will also review PVDF-based sensors based on the triboelectric and piezoelectric effects of the PVDF polymers.

14.
Adv Sci (Weinh) ; 5(9): 1800816, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250810

RESUMO

Room-temperature (RT) gas sensitivity of morphology-controlled free-standing hollow aluminum-doped zinc oxide (AZO) nanofibers for NO2 gas sensors is presented. The free-standing hollow nanofibers are fabricated using a polyvinylpyrrolidone fiber template electrospun on a copper electrode frame followed by radio-frequency sputtering of an AZO thin overlayer and heat treatment at 400 °C to burn off the polymer template. The thickness of the AZO layer is controlled by the deposition time. The gas sensor based on the hollow nanofibers demonstrates fully recoverable n-type RT sensing of low concentrations of NO2 (0.5 ppm). A gas sensor fabricated with Al2O3-filled AZO nanofibers exhibits no gas sensitivity below 75 °C. The gas sensitivity of a sensor is determined by the density of molecules above the minimum energy for adsorption, collision frequency of gas molecules with the surface, and available adsorption sites. Based on finite-difference time-domain simulations, the RT sensitivity of hollow nanofiber sensors is ascribed to the ten times higher collision frequency of NO2 molecules confined inside the fiber compared to the outer surface, as well as twice the surface area of hollow nanofibers compared to the filled ones. This approach might lead to the realization of RT sensitive gas sensors with 1D nanostructures.

15.
Nanoscale ; 9(47): 18597-18603, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29165485

RESUMO

A new photo-stimulated triboelectric generation occurring between a metal-oxide and polyimide during friction was demonstrated. The output currents of the triboelectric nanogenerator were significantly enhanced, under light illumination, up to approximately 5 times depending on the wavelength of the light, providing a new route for energy harvesting devices as well as self-powered selective photodetectors.

16.
Nanotechnology ; 28(39): 395402, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28699921

RESUMO

Well-ordered nanostructure arrays with controlled densities can potentially improve material properties; however, their fabrication typically involves the use of complicated processing techniques. In this work, we demonstrate a uniaxial alignment procedure for fabricating poly(vinylidene fluoride) (PVDF) electrospun nanofibers (NFs) by introducing collectors with additional steps. The mechanism of the observed NF alignment, which occurs due to the concentration of lateral electric field lines around collector steps, has been elucidated via finite-difference time-domain simulations. The membranes composed of well-aligned PVDF NFs are characterized by a higher content of the PVDF ß-phase, as compared to those manufactured from randomly orientated fibers. The piezoelectric energy harvester, which was fabricated by transferring well-aligned PVDF NFs onto flexible substrates with Ag electrodes attached to both sides, exhibited a 2-fold increase in the output voltage and a 3-fold increase in the output current as compared to the corresponding values obtained for the device manufactured from randomly oriented NFs. The enhanced piezoresponse observed for the aligned PVDF NFs is due to their higher ß-phase content, denser structure, smaller effective radius of curvature during bending, greater applied strain, and higher fraction of contributing NFs.

17.
Sci Adv ; 3(5): e1602902, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28560339

RESUMO

A robust nanogenerator based on poly(tert-butyl acrylate) (PtBA)-grafted polyvinylidene difluoride (PVDF) copolymers via dielectric constant control through an atom-transfer radical polymerization technique, which can markedly increase the output power, is demonstrated. The copolymer is mainly composed of α phases with enhanced dipole moments due to the π-bonding and polar characteristics of the ester functional groups in the PtBA, resulting in the increase of dielectric constant values by approximately twice, supported by Kelvin probe force microscopy measurements. This increase in the dielectric constant significantly increased the density of the charges that can be accumulated on the copolymer during physical contact. The nanogenerator generates output signals of 105 V and 25 µA/cm2, a 20-fold enhancement in output power, compared to pristine PVDF-based nanogenerator after tuning the surface potential using a poling method. The markedly enhanced output performance is quite stable and reliable in harsh mechanical environments due to the high flexibility of the films. On the basis of these results, a much faster charging characteristic is demonstrated in this study.

18.
ACS Appl Mater Interfaces ; 9(21): 18061-18068, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28488438

RESUMO

A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 µm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m2, the output power significantly increased to 24 mW/cm2 because of the increase in the surface temperature to 141 °C.

19.
Nat Commun ; 7: 12985, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703165

RESUMO

For existing triboelectric nanogenerators (TENGs), it is important to explore unique methods to further enhance the output power under realistic environments to speed up their commercialization. We report here a practical TENG composed of three layers, in which the key layer, an electric double layer, is inserted between a top layer, made of Al/polydimethylsiloxane, and a bottom layer, made of Al. The efficient charge separation in the middle layer, based on Volta's electrophorus, results from sequential contact configuration of the TENG and direct electrical connection of the middle layer to the earth. A sustainable and enhanced output performance of 1.22 mA and 46.8 mW cm-2 under low frequency of 3 Hz is produced, giving over 16-fold enhancement in output power and corresponding to energy conversion efficiency of 22.4%. Finally, a portable power-supplying system, which provides enough d.c. power for charging a smart watch or phone battery, is also successfully developed.

20.
ACS Appl Mater Interfaces ; 8(28): 18201-7, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27347685

RESUMO

Parallel aligned mesopore arrays in pyramidal-shaped GaN are fabricated by using an electrochemical anodic etching technique, followed by inductively coupled plasma etching assisted by SiO2 nanosphere lithography, and used as a promising photoelectrode for solar water oxidation. The parallel alignment of the pores of several tens of micrometers scale in length is achieved by the low applied voltage and prepattern guided anodization. The dry etching of single-layer SiO2 nanosphere-coated GaN produces a pyramidal shape of the GaN, making the pores open at both sides and shortening the escape path of evolved gas bubbles produced inside pores during the water oxidation. The absorption spectra show that the light absorption in the UV range is ∼93% and that there is a red shift in the absorption edge by 30 nm, compared with the flat GaN. It also shows a remarkable enhancement in the photocurrent density by 5.3 times, compared with flat GaN. Further enhancement (∼40%) by the deposition of Ni was observed due to the generation of an electric field, which increases the charge separation ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...